
Function Course: Programming for Problem Solving (100204)

Topic: Function in C Lnaguage (Unit-6)

 L-T-P: 3-0-4 Class: 2nd Semester

 Branch:- Mechanical + Civil

 Lectures: Monday, Tuesday, Thursday and Saturday

 Labs: Monday, Tuesday, Wednesday, Friday and Saturday

Course co-ordinator: Akhilesh Kumar (8544152761)

akhilesh1987@gmail.com

Darbhanga College of Engineering, Darbhanga.

mailto:akhilesh1987@gmail.com

 Why would we want to write functions?

 It often happens that a particular piece of code is

repeated many times in your program. It’s repeated

either literally or only with some minor

modifications consisting of the use of other

variables in the same algorithm.

Introduction of Function
A function in C language is a block of code that performs a specific task. It has

a name and it is reusable i.e. it can be executed from as many different parts in

a C Program as required. It also optionally returns a value to the calling

program So function in a C program has some properties discussed below.

 Every function has a unique name. This name is used to call function from

“main()” function. A function can be called from within another function.

 A function is independent and it can perform its task without intervention

from or interfering with other parts of the program.

 A function performs a specific task. A task is a distinct job that your

program must perform as a part of its overall operation, such as adding two

or more integer, sorting an array into numerical order, or calculating a cube

root etc.

Introduction of Function

 A function performs a specific task. A task is a distinct job that your

program must perform as a part of its overall operation, such as adding two

or more integer, sorting an array into numerical order, or calculating a cube

root etc.

 A function returns a value to the calling program. This is optional and

depends upon the task your function is going to accomplish. Suppose you

want to just show few lines through function then it is not necessary to

return a value. But if you are calculating area of rectangle and wanted to

use result somewhere in program then you have to send back (return) value

to the calling function.

 C language is collection of various inbuilt functions. If you have written a

program in C then it is evident that you have used C’s inbuilt functions.

Printf, scanf, clrscr etc. all are C’s inbuilt functions. You cannot imagine a

C program without function.

Structure of a Function
 A general form of a C function looks like this:

<return type> Function Name (Argument1, Argument2, Argument3……)

 {
 Statement1;
 Statement2;
 Statement3;
 }

 An example of function.
 int sum (int x, int y)
 {
 int result;
 result = x + y;
 return (result);

 }

Advantages of using functions:
 It makes possible top down modular programming. In this style of

programming, the high level logic of the overall problem is solved
first while the details of each lower level functions is addressed later.

 The length of the source program can be reduced by using functions at
appropriate places.

 It becomes uncomplicated to locate and separate a faulty function for
further study.

 A function may be used later by many other programs this means that
a c programmer can use function written by others, instead of starting
over from scratch.

 A function can be used to keep away from rewriting the same block of
codes which we are going use two or more locations in a program.
This is especially useful if the code involved is long or complicated.

Types of functions:

 Functions with no arguments and no return values.

 Functions with arguments and no return values.

 Functions with arguments and return values.

 Functions that return multiple values.

 Functions with no arguments and return values.

Example of a simple function to add two integers.

 #include<stdio.h>

 #include<conio.h>

 void add(int x,int y)

 {

 int result;

 result = x+y;

 printf("Sum of %d and %d is %d.\n\n",x,y,result);

 }

 void main()

 {

 clrscr();

 add(10,15);

 add(55,64);

 add(168,325);

 getch();

 }

Output:

Functions with no arguments
and no return value.

A C function without any arguments means you cannot

pass data (values like int, char etc) to the called function.

Similarly, function with no return type does not pass

back data to the calling function. It is one of the simplest

types of function in C. This type of function which does

not return any value cannot be used in an expression it

can be used only as independent statement. Let’s have an

example to illustrate this.

1. #include<stdio.h>

2. #include<conio.h>

3. void printline()

4. {

5. int i;

6. printf("\n");

7. for(i=0;i<30;i++)

8. {

9. printf("-");

10. }

11. printf("\n");

12. }

13. Void main()

14. {

15. clrscr();

16. printf("Welcome to function in C");

17. printline();

18. printf("Function easy to learn.");

19. printline();

20. getch();

21. }

 Logic of the functions with no arguments and no return value

Source Code Explanation:
 The above C program example illustrates that how to declare

a function with no argument and no return type. I am going
to explain only important lines only because this C program
example is for those who are above the beginner level.

 Line 3-12: This C code block is a user defined function
(UDF) whose task is to print a horizontal line. This is a
simple function and a basic programmer can understand this.
As you can see in line no. 7 I have declared a “for loop”
which loops 30 time and prints “-” symbol continuously.

 Line 13-21: These line are “main()” function code block.
Line no. 16 and 18 simply prints two different messages.
And line no. 17 and 18 calls our user defined function
“printline()”.

Functions with arguments and no return value.

 In our previous example what we have noticed that “main()”

function has no control over the UDF “printfline()”, it cannot

control its output. Whenever “main()” calls “printline()”, it

simply prints line every time. So the result remains the same.

 A C function with arguments can perform much better than

previous function type. This type of function can accept data

from calling function. In other words, you send data to the

called function from calling function but you cannot send

result data back to the calling function. Rather, it displays the

result on the terminal. But we can control the output of

function by providing various values as arguments. Let’s

have an example to get it better.

1. #include<stdio.h>

2. #include<conio.h>

3. void add(int x, int y)

4. {

5. int result;

6. result = x+y;

7. printf("Sum of %d and %d is %d.\n\n",x,y,result);

8. }

9. void main()

10. {

11. clrscr();

12. add(30,15);

13. add(63,49);

14. add(952,321);

15. getch();

16. }

Logic of the function with arguments and no return value, and

Output.

Source Code Explanation:
 This program simply sends two integer arguments to the UDF
“add()” which, further, calculates its sum and stores in another
variable and then prints that value. So simple program to
understand.

 Line 3-8: This C code block is “add()” which accepts two integer
type arguments. This UDF also has a integer variable “result”
which stores the sum of values passed by calling function (in this
example “main()”). And line no. 7 simply prints the result along
with argument variable values.

 Line 9-16: This code block is a “main()” function but only line no.
12, 13, 14 is important for us now. In these three lines we have
called same function “add()” three times but with different values
and each function call gives different output. So, you can see, we
can control function’s output by providing different integer
parameters which was not possible in function type 1. This is the
difference.

Functions with arguments and return value.

 This type of function can send arguments (data) from

the calling function to the called function and wait for

the result to be returned back from the called function

back to the calling function. And this type of function is

mostly used in programming world because it can do

two way communications; it can accept data as

arguments as well as can send back data as return value.

The data returned by the function can be used later in

our program for further calculations.

1.#include<stdio.h>

2. #include<conio.h>

3. int add(int x, int y)

4. {

5. int result;

6. result = x+y;

7. return(result);

8. }

9. void main()

10. {

11. int z;

12. clrscr();

13. z = add(952,321);

14. printf("Result %d.\n\n",add(30,55));

15. printf("Result %d.\n\n",z);

16. getch();

17. }

Source Code Explanation:
This program sends two integer values (x and y) to the UDF “add()”, “add()” function adds

these two values and sends back the result to the calling function (in this program to

“main()” function). Later result is printed on the terminal.

 Line No. 3-8: Look line no. 3 carefully, it starts with int. This int is the return type of

the function, means it can only return integer type data to the calling function. If you

want any function to return character values then you must change this to char type. On

line no. 7 you can see return statement, return is a keyword and in bracket we can give

values which we want to return. You can assign any integer value to experiment with

this return which ultimately will change its output. Do experiment with all you program

and don’t hesitate.

 Line No. 9-17: In this code block only line no. 13, 14 and 15 is important. We have

declared an integer “z” which we used in line no. 13. Why we are using integer variable

“z” here? You know that our UDF “add()” returns an integer value on calling. To store

that value we have declared an integer value. We have passed 952, 321 to the “add()”

function, which finally return 1273 as result. This value will be stored in “z” integer

variable. Now we can use “z” to print its value or to other function. You will also notice

some strange statement in line no. 14. Actually line no. 14 and 15 does the same job, in

line no. 15 we have used an extra variable whereas on line no. 14 we directly printed the

value without using any extra variable. This was simply to show you how we can use

function in different ways.

Logic of the function with arguments and return

value and Output.

Functions with no arguments but returns value.

 We may need a function which does not take any

argument but only returns values to the calling function

then this type of function is useful. The best example of

this type of function is “getchar()” library function which

is declared in the header file “stdio.h”. We can declare a

similar library function of own. Take a look.

1. #include<stdio.h>

2. #include<conio.h>

3. int send()

4. {

5. int no1;

6. printf("Enter a no : ");

7. scanf("%d",&no1);

8. return(no1);

9. }

10. void main()

11. {

12. int z;

13. clrscr();

14. z = send();

15. printf("\nYou entered : %d.", z);

16. getch();

17. }

Functions with no arguments and return values and

output.

Functions that return multiple values.

 we have learned and seen that in a function, return

statement was able to return only single value.

That is because; a return statement can return only

one value. But if we want to send back more than

one value then how we could do this?

 We have used arguments to send values to the

called function, in the same way we can also use

arguments to send back information to the calling

function. The arguments that are used to send back

data are called Output Parameters.

1. #include<stdio.h>

2. #include<conio.h>

3. void calc(int x, int y, int *add, int *sub)

4. {

5. *add = x+y;

6. *sub = x-y;

7. }

8. void main()

9. {

10. int a=20, b=11, p,q;

11. clrscr();

12. calc(a,b,&p,&q);

13. printf("Sum = %d, Sub = %d",p,q);

14. getch();

15. }

Output of the above program

Source Code Explanation:
Logic of this program is that we call UDF “calc()” and sends argument then it adds
and subtract that two values and store that values in their respective pointers. The
“*” is known as indirection operator whereas “&” known as address operator. We
can get memory address of any variable by simply placing “&” before variable
name. In the same way we get value stored at specific memory location by using
“*” just before memory address. These things are a bit confusing but when you will
understand pointer then these thing will become clearer.

 Line no. 3-7: This UDF function is different from all above UDF because it
implements pointer. I know line no. 3 looks something strange, let’s have a clear
idea of it. “Calc()” function has four arguments, first two arguments need no
explanation. Last two arguments are integer pointer which works as output
parameters (arguments). Pointer can only store address of the value rather than
value but when we add * to pointer variable then we can store value at that
address.

 Line no. 8-15: When we call “calc()” function in the line no. 12 then following
assignments occurs. Value of variable “a” is assigned to “x”, value of variable
“b” is assigned to “y”, address of “p” and “q” to “add” and “sub” respectively.
In line no. 5 and 6 we are adding and subtracting values and storing the result at
their respective memory location.

Thank You

